6 research outputs found

    Automated Crowdturfing Attacks and Defenses in Online Review Systems

    Full text link
    Malicious crowdsourcing forums are gaining traction as sources of spreading misinformation online, but are limited by the costs of hiring and managing human workers. In this paper, we identify a new class of attacks that leverage deep learning language models (Recurrent Neural Networks or RNNs) to automate the generation of fake online reviews for products and services. Not only are these attacks cheap and therefore more scalable, but they can control rate of content output to eliminate the signature burstiness that makes crowdsourced campaigns easy to detect. Using Yelp reviews as an example platform, we show how a two phased review generation and customization attack can produce reviews that are indistinguishable by state-of-the-art statistical detectors. We conduct a survey-based user study to show these reviews not only evade human detection, but also score high on "usefulness" metrics by users. Finally, we develop novel automated defenses against these attacks, by leveraging the lossy transformation introduced by the RNN training and generation cycle. We consider countermeasures against our mechanisms, show that they produce unattractive cost-benefit tradeoffs for attackers, and that they can be further curtailed by simple constraints imposed by online service providers

    Towards a theatrical narratology

    No full text
    info:eu-repo/semantics/publishedOnline Magazine of the Visual Narrative, issue 9http://www.imageandnarrative.be/performance/vanhaesebrouck.ht

    DPIFuzz: A Differential Fuzzing Frameworkto Detect DPI Elusion Strategies for QUIC

    Get PDF
    QUIC is an emerging transport protocol that has the potential to replace TCP in the near future. As such, QUIC will become an important target for Deep Packet Inspection (DPI). Reliable DPI is essential, e.g., for corporate environments, to monitor traffic entering and leaving their networks. However, elusion strategies threaten the validity of DPI systems, as they allow attackers to carefully design traffic to fool and thus evade on-path DPI systems. While such elusion strategies for TCP are well documented, it is unclear if attackers will be able to elude QUIC-based DPI systems. In this paper, we systematically explore elusion methodologies for QUIC. To this end, we present DPIFuzz: a differential fuzzing framework which can automatically detect strategies to elude stateful DPI systems for QUIC. We use DPIFuzz to generate and mutate QUIC streams in order to compare (and find differences in) the server-side interpretations of five popular open-source QUIC implementations. We show that DPIFuzz successfully reveals DPI elusion strategies, such as using packets with duplicate packet numbers or exploiting the diverging handling of overlapping stream offsets by QUIC implementations. DPIFuzz additionally finds four security-critical vulnerabilities in these QUIC implementations
    corecore